Existence result for a nonlinear elliptic problem by topological degree in Sobolev spaces with variable exponent

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear eigenvalue problems in Sobolev spaces with variable exponent

Abstract. We study the boundary value problem −div((|∇u|1 + |∇u|2)∇u) = f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain in R . We focus on the cases when f±(x, u) = ±(−λ|u| u+ |u|u), where m(x) := max{p1(x), p2(x)} < q(x) < N ·m(x) N−m(x) for any x ∈ Ω. In the first case we show the existence of infinitely many weak solutions for any λ > 0. In the second case we prove that if λ is...

متن کامل

An existence result for nonlinear elliptic problems involving critical Sobolev exponent

In this paper we consider the following problem: where Q c Rn is a bounded domain and We prove the existence of a nontrivial solution of (1) for any ~, &#x3E; 0, RESUME. Soient Q un sous-ensemble ouvert borne de Rn et À un nombre positif, le but de cette note c’est de montrer que le probleme suivant : admet, au moins, une solution non triviale, si r~ &#x3E; 4. Work supported by G. N. A. F. A. o...

متن کامل

On a nonlinear eigenvalue problem in Sobolev spaces with variable exponent

Abstract. We consider a class of nonlinear Dirichlet problems involving the p(x)–Laplace operator. Our framework is based on the theory of Sobolev spaces with variable exponent and we establish the existence of a weak solution in such a space. The proof relies on the Mountain Pass Theorem.

متن کامل

Existence of solutions for elliptic systems with critical Sobolev exponent ∗

We establish conditions for existence and for nonexistence of nontrivial solutions to an elliptic system of partial differential equations. This system is of gradient type and has a nonlinearity with critical growth.

متن کامل

Existence of Multiple Solutions for a Singular Elliptic Problem with Critical Sobolev Exponent

and Applied Analysis 3 The following Hardy-Sobolev inequality is due to Caffarelli et al. 12 , which is called Caffarelli-Kohn-Nirenberg inequality. There exist constants S1, S2 > 0 such that (∫ RN |x|−bp |u|pdx )p/p∗ ≤ S1 ∫ RN |x|−ap|∇u|pdx, ∀u ∈ C∞ 0 ( R N ) , 1.8 ∫ RN |x|− a 1 |u|dx ≤ S2 ∫ RN |x|−ap|∇u|pdx, ∀u ∈ C∞ 0 ( R N ) , 1.9 where p∗ Np/ N − pd is called the Sobolev critical exponent. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Moroccan Journal of Pure and Applied Analysis

سال: 2020

ISSN: 2351-8227

DOI: 10.2478/mjpaa-2021-0006